AREA ENGINEER, ELLSWORTH U. S. ARMY CORPS OF ENGINEERS BALLISTIC MISSILE CONSTRUCTION OFFICE P. O. BOX 8 ELLSWORTH AIR FORCE BASE, SOUTH DAKOTA

HISTORY

TITAN I

ELLSWORTH AREA ENGINEER OFFICE

U. S. ARMY, CORPS OF ENGLINEERS

8 DECEMBER 1959 - 31 MARCH 1962

(WWW.CHROMEHOOVES.NET

APPROVED BY

JR. Edward W. Smith, Jr.

LT. COLONEL EDWARD W. EMITH, AREA ENGLINEER

COLONNEL CARLEN H. WHITTESHILL DIRECTOR, TITAN I, CREMCO V.V.CHROMEHOOVES.NET WWW.CHROMEHOOVES.NET

(

(

(

TABLE OF CONTENTS

FOREWOR	D	The same	Page	II
INDEX			Page	III
INTRODUC	CTION		Page	IV
		Joint Venture Contractor DA-5919	Page	V
		Abstract of Bids - Titan I	Page	VI
SECTION	тСНГ	SATAF - Area Engineer Relationship Mission, Establishment OVES. Organization and Functions	Page Page	VII
SECTION	II	Construction Phases, Excluding PLS	Page	2
SECTION	III	Propellant Loading System Construction Phases	Page	3
SECTION	IV	Contract Administration Aspects	Page	4
SECTION	V	Problem Areas	Page	5
SECTION	IV	Miscellaneous Events	Page	6
SECTION	VII	Conclusions and Recommendations	Page	7

FOREWARD

The history of the Ellsworth Titan I Area, U. S. Army, Corps of Engineers, CEEMCO, is a complete and factual summary report of the construction activities and contract administration phases encountered by the Area Engineer Office in the construction of the three (3) Titan I ICEM Complexes and support facilities at Ellsworth Air Force Base and Rapid City, South Dakota vicinity, during the latter part of 1959, through 1960, 1961 and early part of 1962. The Area office had its origin as the Rapid City Area Office, Omaha District, Corps of Engineers, in June 1951. The Ellsworth Titan I Area Office, a field agency of the Ballistic Missile Construction Office, Titan I Directorate, Los Angeles, California, was established at Ellsworth Air Force Base, South Dakota, upon transfer from the Omaha District Engineer to CEEMCO, 1 October 1960.

It provides a concise history of the construction progress, and a background on contract administration actions. This history also includes but is not limited to the following areas of interest - scope of work, personnel and organization of Area Office and SATAF, delays, unusual and unforseen events and their impact, major accidents with recommendation for prevention of same, special events, visits by VIP's and ceremonies, relations with SATAF, problem areas, conclusions and recommendations. Incorporated are photos, charts and other information for clarity.

The Area successfully completed twelve (12) construction contracts totaling approximately 58 million dollars on schedule by 15 December

II

1961, the official contract completion date, despite over 300 major modifications involving thousands of changes as the result of research and development and design being accomplished concurrent with the construction. Other factors overcome in meeting the final completion date included the 1959 national steel strike, various local labor strikes, walkouts and joint occupancy in congested areas caused by the concept of concurrency of installation and checkout of equipment during the construction phase. Some additional work involving minor changes was completed by 28 February 1962.

During the peak work load, the maximum Area strength was seven (7) Army Engineer officers and 120 Corps of Engineers employees. These personnel supervised construction contractors with a work force of approximately 2500 personnel.

It is hoped that a better appreciation and understanding of the various problems encountered in the Titan I construction program at Ellsworth Air Force Base will be felt by the reader upon review of

As a matter of interest, we must take note of the key organizations that made the construction at Ellsworth possible; there were five (5) main agencies involved in this missile construction and

this history.

II

installation program, of which three were military and two were civilian. Each one had a definite and unique function:

a. U. S. Army Corps of Engineers, Omaha District, directly supervised the initial construction of the three (3).Titan I complexes during the latter part of 1959, continuing until the fall of 1960.

b. U. S. Army Corps of Engineers Ballistic Missile Construction Office (CEEMCO) Los Angeles, California -- through the Titan I Directorate -- directly supervised the remaining construction until the project was completed.

c. U. S. Air Force, Site Activation Task Force (SATAF), Ballistic Systems Division and related agencies as the -- "Purchasing or Using" Agencies.

d. Leavell-Scott & Associates -- The Prime Contractor, a Joint Venture, who physically did the facility construction phases of the project which is covered under the Construction and Propellant Loading System sections of this history.

e. The Martin Company and Related Weapons System Associated Contractors -- designed the Titan I ICHM and were to install it, after the facility construction phases were completed.

It must be pointed out that this history covers only those phases applicable to the facility construction features, the activities of the U. S. Air Force and their Contractors are not included.

EDWARD W. SMITH, JR. Lt. Colonel, Corps of Engineers Area Engineer, Ellsworth

II

INDEX

(

	IL ARODUCITO		Page	IV
	SECTION I	MISSION, ESTABLISHMENT, ORGANIZA AND FUNCTIONS OF ELLSWORTH AREA	TION Page	1
	WWW.C		ES.N	ET
	PART I	MISSION	Page	1-01
	PART II	ESTABLISHMENT	Page	1-03
	PART II	ORGANIZATION	Page	1-07
	PART IN	FUNCTIONS	Page	1-09
	APPRIDIT	A REFERENCES	Paga	1-15
8	SECTION II	CONSTRUCTION	Page	2
	PART I	INTRODUCTION	Page	2-03
	PART II	SCOPE OF WORK	Page	2-03
(WWW PART CI	GEOLOGY OF THE COMPLEXES	/ E Spage N	2-14
	PART I	EXCAVATION AND BACKFILL	Page	2-16
	PART V	CONCRETE OPERATION	Page	2-24
	PART VI	MISSILE SILO DOORS	Page	2-30
	PART VI	SUPPORT FACILITIES	Page	2-32
	PART VI	ELECTRICAL EQUIPMENT	Page	2-41
	PART I	MECHANICAL EQUIPMENT	Page	2-44
		REFERENCES	Page	2-52
	SECTION III	CONSTRUCTION PHASES OF PROPELLAN LOADING SYSTEM	r Page	3
-	WW.WpartG	HREAMEHOOV	/ESpage	3-92
;	PART II	INSTALLATION ASPECTS	Page	3-05
	PART II	TESTING PHASES	Page	3-06

(PART	IV	USE OF INDEPENDENT TESTING LABORATORIES	Page	3-09
	PART	V	INPACT OF NODIFICATIONS	Page	3-10
	PART	vţ	CHRONOLOGICAL LIST GF SIGNIFICANT EVENTS	Page	3-11
	WWW		REFERENCES	5.N	E 3-13
	St. Station	IV COD	NTRACT ADMINISTRATION	Page	4
	PART	I	(HD IDRAL	Page	4-02
	PART	II	CONTRACT MODIFICATIONS	Page	4-17
	PART	IIĻ	ASSESSMENT OF LIQUIDATED DAMAGES	Page	4-22
	PART	IV	PRIME CONTRACTOR EVALUATION AND RELATIONSHIP WITH SUBCONTRACTORS	Page	4-25
	PART	V	AREA CLAIMS ACTIONS	Page	4-28
	PART	VI	LABOR TRENDS	Page	4-31
(DIX-D	REFERENCESE HOOVES	Page	4-37
	SECTION	V PR	Delem Areas	Page	5
	PART	I	() INTERAL	Page	5-01
	PART	ĬĪ	SITE LOCATIONS, CLIMATE, LOCAL ECONOMY AND LABOR	Page	5-03
	PART	III	PROPELLANT LOADING SYSTEM PROBLEM AREAS	Page	5-05
	PART	IV	CHALCE'S	Page	5-09
•	PART	¥	JOINT OCCUPANCY, INTERFERENCE AND ACCELERATION	Pege	5-12
		с ^{ут} НF	THE UNIQUE PROBLEM OF GROUND WATER AND WELLS, COMPLEX 1-C	S.N	5-16
•	SECTIO	AT HE	SCELLATEOUS	Page	6
	PART	T	SAFETY	Page	6-01
	PART	II	GOVERIMENT COSTS	Page	6-05
			777		

S,

PART	III	SPECIAL	EV.N.	rs			Page	6-10	
PART	IV	RECOCILY	TON	AND A	HARDS		Page	6-18	
APPEN	DIX-F	Ringerie. (IDS				Page	6-19	
SECTION	VII COM	CLUSIONS	AND H	RECOM	ENDATIONS		Page	7	
W.C	CHR	OM	E	Н	OOV	ES.	5. N	ΕT	

WWW.CHROMEHOOVES.NET

WWW.CHROMEHOOVES.NET

III

INTRODUCTION

The Titan I ICBM project built in a 30 mile radius of Rapid City and at Ellsworth Air Force Base consisted of three individual launch complexes, each providing facilities for launching and guidance of three Titan I Intercontinental Ballistic Missiles and the support

facilities required to back up the mission of launching the missile.

All three complexes were built concurrently with completion dates being thirty days apart -- in other words, the third complex was completed 60 days after the first one; support facilities were constructed concurrently.

The launch complexes are of the hardened type; i.e., all the essential facilities are built of heavily reinforced concrete and are buried underground. When completed, only essential doors covering the entrance portal, missile and antenna silow will be at ground level, and therefore, exposed. These doors are of massive concrete construction, heavily reinforced and designed to withstand blast.

All of the underground operating facilities are connected by personnel and utility tunnels. Each complex contains all necessary service facilities and utilities, and is, as far as possible, a selfcontained operation.

The following comparisons will give some idea of the magnitude of each of these complexes and the wast amount of material required to construct such a facility:

a. Before construction is started, a tremendous amount of excavation was required. About 600,000 cubic yards of earth were

IV

removed, and after completion, most of this dirt was moved back in place again to cover the facility. Six hundred thousand cubic yards of dirt would make a column one yard square and about 340 miles high.

b. In the construction of each complex, 52,000 barrels of cement were used. This makes up into 35,000 cubic yards of concrete, enough to lay a 3-foot sidewalk 4" thick and 189 miles long, or to pour the basements for about 1375 average 5-room houses.

7

c. To reinforce the concrete and make the tunnel sections, etc., about 6,900 tons of steel was required for each complex. This amount of steel would fill a train of freight cars more than 1 1/4 miles long.

d. Two hundred fifty miles of high strength wire was used to prestress the concrete grade beams on which the Control Center E domes were built.

e. Each complex will generate enough electricity to supply over 400 normal houses, and contains enough ventilating and air conditioning capacity to completely air condition 200 of these houses.

The foregoing are a few examples of what went into such a facility. Not mentioned are the miles of wire, thousands of feet of pipe and tubing, hundreds of feet of ductwork and the miltitude of other types of equipment and materials, paint, paneling, flooring,

etc., that makes up the completed installation.

Finally, the missiles themselves and their direct support equipment must be considered. The missile systems, extremely sensitive and intricate, call for precision and reliability almost beyond imagination.

IV

Building such familities, from shoveling dirt to calibrating the electronic computer, is a tremendous undertaking requiring unusual technical skill and above all, wholehearted teamwork and cooperation.

of all Government agencies and contractors concerned ES.NET

(WWW.CHROMEHOOVES.NET

CONGRATULATORY MESSAGES

Upon the completion of the facility construction phases, the following congratulatory messages were received:

From Colonel Whitesell, Titan I Director to Area Engineer and Staff:

"Whitesell to Smith. Congratulations to you and your staff on a job well done. Despite the pressures, harassment and troubles aimed your way, you have met final completion dates that were established more than two years ago. I am impressed and grateful."

From Lt. General Walter K. Wilson, Chief of Engineers to Area Engineer and Staff:

"Congratulations to you and your staff on the successful completion and turnover of Ellsworth Missile Base to the Air Force. The combined efforts of all concerned to effect this timely completion greatly contributed to our V. Mational Defense effort and the security of our NET nation."

100VES.NET

JOINT VENTURE CONTRACTOR FOR

DA-25-066-ENG-5919 WS-107A-2 TECHNICAL FACILITIES SQUADRON I, TITAN I ELLSWORTH AIR FORCE BASE, SOUTH DAKOTA

Work under this contract was performed by a Joint Venture, trading as the Leavell-Scott & Associates. Set forth below are the names of the eight Joint Venturers, together with an indication of percentages of responsibilities under the contract. In view of the fact that the C. H. Leavell Company and the Scott Company together held a majority of interest, these two companies were designated as sponsors of the Joint Venture.

COMPARY

PERCENTAGE INTEREST

The Scott Company of Northern California Oakland, California	20
The Morrison-Knudsen Company, Inc., a Delaware Corporation	12
Paul Hardeman, Inc. of Stanton, California	10
MacDonald Construction Company, Saint Louis, Nissouri	10
Johnson, Drake, and Piper, Inc., Minneapolis, Minnesota	5
Olson Construction Company, Lincoln, Nebraska	5

Leavell and Company, El Paso, Texa

F. E. Young Construction Company, San Diego, California 3

At page VI is a copy of the Abstract of Bid - Construction, listing Leavell-Scott & Associates their Estimate of Bid, and other companies that submitted bids on the construction of the Titan I facilities at Ellsworth.

	110-	22-066-60-1	Depertment Cmaha 2, H	of the	arps of English Army , 4 December 1		R	ЭM	1E	НС)VI	ES	5.		ΙE	Τ	-	
	20 0 30	Pmi	1. mar Cal	M. D. J.	T	WENT EPTHATE	810 00.	6	810 10. ()	010 00. 1	l	\$10 00.			819 86.		010 80.	
	iren ad	WS 107A-2 Jechnical Facilities, Elismorth Air Force Bass, Repid City, South Daketa			(0)1boat	n (Stinate Contract (Stinate an offis) Contract (Stinate ind profits)	Leavell-Scel 1900 Bysmins El Pase, Ter		Kalerr - Re Puget 1974 Breadw Oakland, Ca (A JUDIT	ywend - Hacco - Sound Ifornia VENTUNE)	iruerencod' re	E. CORP., Slown MEZINA CONSTR.CO., Lity, So. Doboto, GIMEERING COMP., plorodo. VENTABLE 1							
No. of St.	1.	Missile Sile.	•	Each	705,980.00	6,353,820.00	686,400.00	5,898,600.00	780,000.00	7,020,000.00	620,000.00	5,580,000.00							T
Ale and	2.	Equipment Terminal.	9	Each	370,445.00	3,334,005.00	333,401.00	3,000,609.00	275,000.00	2,475,000.00	327,000.00	2,898,000.00							
	3.	Propellant Teminal.	•	Each	413,751.00	3,723,759.00	368,899.00	3,317,391.00	480,000.00	4,320,000.00	403,000.00	3,627,000.00							1
	4.	Centrel Center.	3 '	Each	433,451.00	1,300,353.00	544,003.00	1,632,009.00	400,000.00	1,200,000.00	437,000.00	1,796,000.00							
	5.	Antonno Silo.	6	Each	119,006.00	714,036.00	165,220.00	991,320.00	100,000.00	600,000.00	135,000.00	810,000,00							
	6.	Steel Ring Beams, Rods and Lagging (fer Bracine and Shoring Sheft																	1
$\nu < 2 $	1.12	Excevations for 3 Complexes.)	Jeb	L.S.		408,806.00		250,000.00		600,000.00		500,000.00							1
	7.	Powerhouse. Complete with Air Intake and Exhaust Structures, and															,		1
1.00	1.19.20	Tunnel Junctions Not. 11, 13 4 14-	3	Each	2,390,138.00	7,170,414.00	1,836,833.00	5,516,499.00	1,900,000.00	5,700,000.00	7,100,000.00	6,300,000.00							1
	. ·	Portal Sile.	3	Each	282,054,00	846,162.00	264,825.00	794,475.00	150,000.00	450,000.00	245,000.00	735,000.00							
	2	Communications Antenna.	Job	L.S.		9,961.00		25,494.00		25,000.00		8,000.00					1		
	10.	Launcher Area Filtretion Structure.	3	Bach	99,080.00	297,240.00	64,843.00	194,529.00	60,000.00	180,000.00	70,000.00	210,000.00							
	11:10	Steel Tenneles																	
er el 🛁	1.1.1.2.18	Type "A" Tunnels (for 3	Job	L.S.		1,441,797.00		1,005,956.00		1,200,000.00		1,310,000.00							
	1. 1. 1. Ly	** <u>Complexes.</u>) Type ** Tunnels (for 3 b- Complexes.)	Job	L.S.		438,965.00		810,563.00		350,000.00		190,000.00							
S. 99-5	eger iste	c. Type "C" Tunnels (for 3	Jeb	L.S.		158,135.00		119,329.00		80,000.00		125,000.00							1
		d. Type "D" Tunnels complete with d. 6'-6" Diameter Offset Tunnels																	
	gereksenger.	to Missile Siles and 0'-6" Diameter Exhevet Termel			-					I.I.						T			
		Structures (for 3 Complains.)	Job	L.S.		1,160,792.00	IR1	1,051,382.00		850,000.00		679,000.00							
	ger des s	Type "E" Tunnels (for 3 " Gempleres.)	Jeb	1.5.		55,801.00		414,121.00		75,000.00		40,000.00		1.	1				

2

1

7 [

THE U.S. AIR FORCE

ELLSWORTH SITE ACTIVATION TASK FORCE (SATAF)

AND

NWW.CRELATIONSHIP WITH THE AREA CINCINEER S.NET

The Ellsworth Site Activation Task Force (SATAF) as all other similar organizations is essentially an Air Force management team. Formed in August 1960, the SATAF is responsible to insure that the construction of facilities, the installation and checkout of the weapons system and associated equipment and the turnover of completed, operational Titan missile launching and support facilities to the Strategic Air Command are performed in a timely and economical manner. All these facilities when completed will be turned over to the 850th Strategic Missile Squadron (SAC).

The SATAF Commander is responsible for activation of the site, including construction, installation, checkout and its turnover to SAC in an acceptable operational condition in accordance with official program schedules. He is also responsible for base support to the integrating and associate contractors. As the Commander, he exercises operational control, including assignment of tasks, designation of objectives and necessary direction over the different Air Force

100VES.NE

detachments that comprise the SATAF.

VII

Difficulty also was experienced in regards to interpretation of the contract as to the turning over of a completed facility. The major area of disagreement was the concept of what constituted a completed facility. Local SATAF repeatedly refused to accept substantially completed structures until almost every minor deficiency was corrected and until practically every item of electrical and mechanical equipment was fully operational. Such equipment operation depended upon completion of the various utilities, systems and other structures. The other structure was either incomplete or its utilities were undergoing design change modifications which prevented operation. The situation was partially relieved by inaugurating use of Beneficial Occupancy Agreements after agreements on formal transfer was unobtainable. The overall effect was that the facility contractor was required to perform maintenance and repair on certain structures for several months, although this contract work was completed except for operational adjustments to utilities and although the structure was predominately occupied by AF facilities contractor workmen.

Lastly, in some instances, they questioned the manner in which work had been performed or specifications interpreted, but would not state exactly what they desired or thought was required. They also interpreted test procedures in the same manner.

In conclusion, however, it can be stated that since the inception of this joint organization, through the early difficulty situations and to the end of the facility construction aspects, our relationship continued to be excellent, amicable and workable.

VII

RELATIONSHIP BETWEEN SATAF AND AREA ENGINEER

In addition to the title and duties of Area Engineer, the Area Engineer was designated the Deputy for Construction for the SATAF on 1 July 1961. Prior to this integration of functions, after and throughout this program, there were some problem areas with respect to coordination:

All design changes or resolution of conflicts or discrepancies which the Area Office considered to be necessary were required to be approved by SATAF. Obtaining SATAF concurrence or non-concurrence was time consuming and added to the time which the contractor was delayed. In many instances, several weeks passed awaiting reply to our correspondence to SATAF.

After experiencing the long delay in receiving replies from SATAF, it was necessary for the Area office to set up a suspense log of each letter written and continually push by telephone calls and follow-up letters in order to obtain a reply.

In dealing with SATAF on interpretation of specifications, it was found they were inclined to read into the specification requirements which were not included. They failed in some cases to analyze the specifications completely but instead, based their case on only one portion of the specifications. These differences in interpretation of certain specific contract conditions were resolved by joint conference and always resulted in either a design change modification or a directive to the contractor to proceed under the appropriate clause of the contract.

(

(

WWW.CHROMEHOOVES.NET

MISSICH, ESTABLISHMENT, ORGANIZATION

AND FUNCTIONS

OF

ELLSWORTH TITAN I AREA ENGINEER OFFICE

VW.CHROME $\mathbf{)}\mathbf{0}$ Page 1-01 PART II ESTABLISHIGH Page 1-03 PART III ORGANIZATION Page 1-07 PART IV JUCITO S Page 1-09 Page 1-15 APPENDIX-A SECTION I RIDIGICIAN (HOS